# Chapter 6 of 24 - Towards Classification

Despite the fact I am speed-reading for the sake of catching up, this chapter did seem to go by suspiciously quickly.

Direct products was an interesting new topic, cyclic groups added to some knowledge I already had, and the chapter finished off with group actions which was mostly revision.

Next chapter is just "Finite Groups", though I'm guessing with a whole chapter ahead of me, it turns out there's quite a lot of stuff I don't know about finite groups.

# Chapter 5 of 24 - Examples of Groups

This was a standard speedy revision session in group theory. Axioms, subgroups, cosets, normal subgroups, quotient groups, isomorphisms and homomorphisms.

It was nice to get back into something that was familiar to me.

Next chapter is vaguely named "Towards Classification". Seems to introduce the concept of a direct product, and revise orbits and stabilisers. I'm hoping I'll be able to get through this quickly, as I'm starting to fall behind slightly...

# Chapter 4 of 24 - Fermat's and Wilson's Theorems

Okay. Another chapter down. Very much "congruence continued".

Sections I covered were Fermat's Little Theorem, representation of fractions by decimals, Wilson's Theorem, and polynomial congruences. On top of that, I've managed to complete my first assignment based on these first four chapters. Reviewing that feedback will be very interesting.

One thing I have noticed is that the materials in the book are far more challenging than the questions in the assignment. I wonder if I'm being lured in to a false sense of security here. I suppose I'll only know when I review the past exam papers for this module...

Can't quite believe I've reached this point as the next chapter is "Examples of groups". Hello group theory my old friend!

# Chapter 3 of 24 - Congruence

I've worked with congruences before, but this chapter was a lot more fun than I thought it would be. Introduction to properties, classic divisibility tests and simultaneous linear congruences.

Questions in this chapter seemed a lot more achievable. Though looking at the assignment, the related question seemed completely out of my reach. It was that feeling of fear you normally get in an exam when you see a question you don't understand and your brain shuts down. I've got some work to do in this area, as I feel I've been experiencing that feeling fairly consistently in the last two exams I've had (stats and complex analysis). -both of which have been covid lockdown at-home exams.

What was good though was in this chapter there was some "highest common factor" questions thrown in there, so that was really useful. Good for building confidence.

It seems there's more congruence work in the next section, "Fermat's and Wilson's Theorems".

# Chapter 2 of 24 - Prime Numbers

Right. Another very tough chapter complete.

Well I say complete. I did have to leave out a number of the exercises again. Of the answers to the exercises that I understand, the answers in most cases are inspired. There's simply no way I could ever make the logical bounds demonstrated in those answers.

I was so disturbed by the difficulty of the exercises in Chapter 1, I decided to consult my tutor about it. He replied explaining that a lot of the exercises are meant to teach you by you looking at the answers so you're kind of meant to get stuck. This made me feel a lot better, but now it's just down to the time I can spend reviewing and learning from each answer.

But yes. Prime numbers. Fun chapter! Covered an intro to The Primes, the prime decomposition of integers, the infinitude of primes, famous problems concerning primes, and Fibonacci numbers. Fibonacci numbers are far more interesting than I ever realised, it turns out.

Okay. Time to move on to Congruence...

# Chapter 1 of 24 - Foundations

Well 2021 has gone quickly hasn't it?

The workload in complex analysis became so large that I couldn't contribute to this blog for the rest of the academic year. This is frustrating as I felt there were some really important things to learn from my marked assignments. If I ever find time to write them up, I will do.

Though needless to say, it's suddenly October. My new (and final) module begins! M303 Further Pure Mathematics. This will be a big one. It's a final-stage double-credit module and contains an absolutely enormous amount of material.

Last week I received an email from my tutor that could be summarised to two words: "GET AHEAD". Of course that's when the fear struck, so I decided to be tactical with the first chapter. There were two sets of exercises I didn't attempt, because I realised I knew enough about the material to answer the assignment questions. However practically all of the exercises I did try, I couldn't complete. At this early stage, I'm perhaps feeling it might've been a mistake to choose this module. Having said that, I have been able to answer the first two questions of the assignment.

The first chapter was about number theory. Proof by Mathematical Induction, highest common factors, lowest common multiples, the Euclidean Algorithm, and Diophantine equations. Not only all that, but all the theories, definitions, propositions and lemmas that go along with them.

I feel this was so difficult because you need to use all the theories and definitions like a palette of different paints. In the same way as the artist it feels like the mathematician needs to use the theories and definitions to paint a picture. Problem being, it felt like I was being taught what the primary colours were for the first time. Still, we've moved on, and I've marked the exercises I need to return to. I'm hoping that down the line I'll be able to return to them and they'll make a bit more sense to me.

Deep breaths.

Next chapter? Prime numbers...

# Complex Analysis Assignment 1

My first complex analysis assignment has been marked and returned. I don't think I've ever felt the urge quite so much to learn from my mistakes.

Consequently there has been quite a lot of post-assignment learning... :/

This assignment featured a very brief introduction to complex numbers as a refresher, then broadly covered complex functions, the concept of continuity and complex differentiation.

So in no particular order, below are some notes on mistakes I made and how I could've avoided them! There's a lot to reflect on here...

Read questions carefully. One of the first very simple questions read "express in polar form and determine all fourth roots". I did the second bit, but not the first.

I feel this is a bit "Complex Numbers 101", but the square root sign is defined as the principal square root (of a complex number), i.e. there's no need to calculate the second root.

If you're using the triangle inequality, state it specifically.

Again, this is fairly "Complex Numbers 101", but the polar form of a complex number isn't just a cosine function as the real part, and a sine function as the imaginary part. The arguments to both functions must be identical to qualify as "polar form". ie, you should be able to write the complex number as an exponential form.

Top tip: Be mindful about using identities. In complex analysis there are loads of them and they help a great deal.

When working out the inverse of a complex function, it's important to use your common sense. Part of one inverse I'd calculated had a square root in it. Just by looking at that, you know it could never produce a unique answer (it isn't a one-to-one function).

For another, I had to find the inverse of and the domain of that inverse. I got this spectacularly wrong. I'd written: given , hence .

Trick here was to exponentiate each side, leading to . But the domain of the inverse isn't affected by the "3" above, the image set of the original function is still .

Some complex functions are very very different to their real equivalents. Case in point: , but . Which leads to the next note:

If is the divisor in a complex quotient, you need to show that it's only 0 for values outside of the given range of the equation (eg ).

For one question, I had to prove that was continuous. I thought this was easy.

is a basic continuous function on . So if you let , then is continuous, right?

Not quite. I had entirely forgotten to state that the given set is a subset of the set I gave: .

The answer can appear obvious sometimes, but you have to keep your answer rigorous, otherwise you risk losing half marks or whole marks here and there.

Note:

🙁

For one question I had to prove whether a set was a region or not. For reference, a region is a non-empty, connected, open subset of . In the usual manner, if you can prove that any of those three properties don't hold then you've managed to prove that your set isn't a region. Easy.

I realised I could prove a set was closed, and hence not a region. Turns out this was incorrect. A set being "closed" and a set being "not open" hold two completely different definitions, and are seen as different things. I was meant to show it was "not open" as opposed to showing it was "closed".

In other words, mathematically:

Closed is not the same as not-open.
Closed is not the opposite of open.
Not-open is the opposite of open.

Again, here I needed to provide a proof based on the properties of various objects. Given a set that was compact (closed and bounded), I needed to prove that a function was bounded on that set.

The Boundedness Theorem states that if a function is continuous on a compact set, then that function is bounded on that set.

The function was:

I proved that the given function was continuous on it's domain, but I'd failed to prove it was continuous on the set. Here, I needed to show where the function was undefined, THEN show that those points at which it was undefined all lay outside of the set. So there was quite a lot of work I missed out from this answer.

My simultaneous requirement for the Cauchy-Riemann theorem, AND the Cauchy-Riemann Converse theorem within a proof ended up not flowing very well logically. Once again, I'd jumped ahead with my logic. As soon as I had seen something obvious, I felt the urge to state it immediately.

The Cauchy-Riemann theorem proves that a function is not differentiable at certain points. The Converse theorem then proves that a function IS differentiable on certain points. After using the Cauchy-Riemann theorem, it was extremely obvious where the function was differentiable, so I stated it. Then, as a matter of course, plodded through the Converse theorem to prove it. Complete lack of discipline! 🙂

# Complex Functions: Domains, Image Sets and Inverses

I can imagine having to refer to these notes regularly, so I'm putting them here!

# Image Sets

1. State the domain of .
2. Rearrange so is a function of (to discover the condition under which remains valid.

e.g., for :

# Domain of Combined Functions

Domain of combined functions are the intersection () of the domains of all component functions and that of the combined function. e.g:

# Domain of Composite Functions

For and with domains and respectively, the domain of is:

e.g., for:

# Inverses

1. Determine image set of .
2. Invert to find a unique in the domain of .

For

(all same as above for finding an image set)

gives a unique soluition in , hence has a unique inverse rule:

# A New Year of Study Begins!

My virology work placement came and went so quickly. Great experience. I was certainly not expecting it to be such a creative process. Or should I say "necessarily creative process". It seems with research like this, you really do need to be mindful of other results popping out of your work. If the tangent appears to be more important/meaningful than the original work, then it's best to follow it!

Of course this creative approach gives rise to a bit of a problem. The project has the potential to meander. I suppose this would be fine on a longer time scale, but for my all-too-brief 8 weeks it meant I wasn't able to neatly draw a line under it by the end of the placement.

Though having said that, the work that I was looking at wasn't time-dependant so I still have however long I want to complete the project in my spare time. After this next year of study I'd love to return to it.

Speaking which... my next year of study has started! I won't be informed of my assigned tutor for about another month, but I have my learning materials. So learning has begun! This year it's complex analysis. Very excited to be looking at this subject, and to be writing up the areas I have difficulty with on here.

(Side note: Wow, I've been writing on this blog for 5 years?!)

# Pumping Lemma

Way way off the beaten path here, but this is the best example of usage of the pumping lemma I've seen. Just need somewhere to put it... The below is taken from here. Theorem: Let be a regular language, and be a string. Then there exists a constant s.t. . We can break into three strings, , s.t.:
Method to prove that a language is not regular:
• At first, we have to assume that is regular.
• So, the pumping lemma should hold for .
• Use the pumping lemma to obtain a contradiction:
• Select s.t. .
• Select s.t. .
• Select s.t.
• Assign the remaining string to .
• Select s.t. the resulting string is not in .
Problem: Prove that is not regular. Solution:
• At first, we assume that is regular and is the number of states.
• Let . Thus .
• By the pumping lemma, let , where .
• Let , and , where , . Thusly .
• Let . Then .
• Number of .
• Hence, . Since , is not of the form !!!!!!!!!!!!!!!
• Thus, . Hence is not regular.