Loving the irony that the penultimate chapter is on "completeness".
First two sections covered completeness of metrics as defined by sequences, including examples of basic well-known metrics that are complete.
Third section was on the contraction mapping theorem, which seemed fairly profound. It allows you to show that generalised differentials or integrals have unique solutions. I needed to speed through this section, and I wonder whether a review of past papers will reveal that I need to spend more time on this. Like a lot of this, as some of the answers are so lengthy, I do wonder how feasible it is that any of it will be in the exam.
The last section covered methods by which you can find a completion of a metric. This presented a framework that was really interesting, but offered no examples. There was even an admission that the process they'd presented was lengthy and with examples and not mention of it in the assignment, I can only guess it too is not covered in the exam.
So. One quick review of the ongoing assignment and I'll finally be on to my last chapter. Ever.